

Development Standards & Practices Used

Following a set of standards ensures development of a product that is safe and adheres to the
consumer preferences and expectations; while also ensuring a reliable, and organized workflow for
the engineers and the consumer. The standards used in this engineering standards used in this
project follow the guidelines of:

● IEEE Engineering Standards
● IEEE Software Engineering Standards

Summary of Requirements

● BioBricks repository
● Extending plugin to support bio bricks
● Web crawling
● Software product line engineering
● Translation of features to be compatible with Feature IDE
● Creating a system architecture

Applicable Courses from Iowa State University Curriculum

● Com S 228: Introduction to Data Structures
● Com S 309: Software Development Practices
● Com S 311: Design and Analysis of Algorithms
● CPR E 308: Introduction to Operating Systems
● E E 230: Electronic Circuits and Systems

New Skills/Knowledge acquired that was not taught in courses
● Background on BioBricks parts that are used in biological living cell building.
● Feature Modeling Concept and application
● FeatureIDE Eclipse Plugin
● Effective Team Coordination
● Effective Client Communication

SDDEC​20-22 1

Table of Contents
Definitions 4

Figures 4

Tables 4

1 Introduction 5

Acknowledgement 5

Problem and Project Statement 5

Operational Environment 5

Requirements 5

Intended Users and Uses 6

Assumptions and Limitations 6

Expected End Product and Deliverables 6

2. Specifications and Analysis 6

Proposed Approach 6

Design Analysis 7

Development Process 7

Conceptual Sketch 7

Figure 1: the flow of project requirements and dependencies presented in a hierarchy. The
figure is modelled similarly to a feature model. 8

3. Statement of Work 8

3.1 Previous Work And Literature 8

3.2 Technology Considerations 9

3.3 Task Decomposition 9

3.4 Possible Risks And Risk Management 9

3.5 Project Proposed Milestones and Evaluation Criteria 10

3.6 Project Tracking Procedures 10

3.7 Expected Results and Validation 11

SDDEC​20-22 2

4. Project Timeline, Estimated Resources, and Challenges 11

4.1 Project Timeline 11

Figure 2: timeline of the project presented as a hierarchy similar to a feature model. The project
is divided into four design phases consisting of eight work weeks. Each phase breaks down a set
of tasks to be completed by the expected work week deadline 12

Figure 3: Gantt Chart presenting task and milestone breakdown with estimated times. This
Gantt Chart is used as a progress tracker to make sure the team is in the expected design phase.
12

4.2 Feasibility Assessment 13

4.3 Personnel Effort Requirements 13

Table 1: table showing tasks with low projected effort 13

Table 2: table showing tasks with medium projected effort 14

Table 3: table showing tasks with high projected effort 15

4.4 Other Resource Requirements 15

4.5 Financial Requirements 16

Table 4: cost breakdown for the project 16

5. Testing and Implementation 16

Interface Specifications 16

Hardware and software 17

Functional Testing 17

Non-Functional Testing 17

Process 18

Figure 4: Diagram showing Basic testing flow. This diagram shows how the team's coding and
testing has been processed involving PMD, SecurityBugs, and Checkstyle. 18

Results 18

6. Closing Material 19

6.1 Conclusion 19

6.2 References 19

6.3 Appendices 20

SDDEC​20-22 3

List of figures/tables/symbols/definitions

D​EFINITIONS

● BioBricks Parts:​ a standard for interchangeable parts, developed with a view to building
biological systems in living cells. BioBricks Parts are referred to as Parts within the design
document.

● Software Product Line (SPL):​ Software engineering methods, tools and techniques for
creating a collection of similar software systems from a shared set of software assets using a
common means of production. This definition is referenced as ​SPL​ through the document.

● Feature Model:​ a compact representation of all the products of the SPL in terms of
features.

● FeatureIDE:​ an Eclipse-based IDE that supports all phases of feature-oriented software
development for the development of SPLs: domain analysis, domain design, domain
implementation, requirements analysis, software generation, and quality assurance.
Different SPL implementation techniques are integrated such as feature-oriented
programming (FOP), aspect-oriented programming (AOP), preprocessors, and plug-ins.

F​IGURES

● Figure 1​: the flow of project requirements and dependencies presented in a hierarchy. The
figure is modelled similarly to a feature model​ (page 8).

● Figure 2​: timeline of the project presented as a hierarchy similar to a feature model. The
project is divided into four design phases consisting of eight work weeks. Each phase
breaks down a set of tasks to be completed by the expected work week deadline (page​ 12).

● Figure 3: ​Gantt Chart presenting task and milestone breakdown with estimated times. This
Gantt Chart is used as a progress tracker to make sure the team is in the expected design
phase (page 12)​.

● Figure 4​: Diagram showing Basic testing flow. This diagram shows how the team's coding
and testing has been processed involving PMD, SecurityBugs, and Checkstyle​ (page 18).

T​ABLES

● Table 1: ​table showing tasks with low projected effort (page 13).

● Table 2:​ table showing tasks with medium projected effort (pages: 14).

● Table 3:​ table showing tasks with high projected effort (page 15).

● Table 4: ​table showing financial costs and total cost (page 16).

SDDEC​20-22 4

1 Introduction

1.1 A​CKNOWLEDGEMENT

Special thanks to Dr. Myra Cohen (Iowa State University), and Mikaela ​Cashman (Iowa State
University) for providing the technical knowledge and guidance needed for success in this project.
Special thanks also to the course supervisors, and everyone providing mentorship during the course
of the project.

1.2 P​ROBLEM​ ​AND​ P​ROJECT​ S​TATEMENT

Software Product Lines are a set of software systems with the intrinsic value of features pertaining
to the satisfaction of certain needs; a key aspect being a model presenting commonality and
variability within a hierarchical model. A set of these SPLs are called families of SPLs. A subset of
SPLs are Feature Models. Feature modeling is an organization tool that allows an engineer to
represent features in a tree of hierarchies; a tool for software modeling to present family of software
models. It is a unique and efficient way of modeling feature rich systems.

BioBricks, an iGEM repository of biological parts, provides a tool for biologists and users interested
in DNA related-fields to analyze parts and models created on this website.. While this tool is useful,
the repository does not implement the feature model organization method; revealing new
ideologies about these DNA models that one could not see before.

Over the course of a year, creating an Eclipse plugin that creates Feature Models based on existing
models found in an open-source repository called BioBricks is the goal of the project. A successful
implementation of this plugin allows biologists and scientists to view various models from
BioBricks in an organized hierarchy.

1.3 O​PERATIONAL​ E​NVIRONMENT

The project is software-based. Java 8 and the FeatureIDE plugin for Eclipse are used for the project.

1.4 R​EQUIREMENTS

The project is broken into functional and non-functional requirements.

● Functional Requirements:

○ Extract BioBricks part data using web scraper and XML extraction.

○ Automatically parse scraped part info into objects and populate the database.

○ Construct BioBricks Feature Models through FeatureIDE.

○ Create Software Product Lines from models using a simple GUI.

● Non-functional Requirements:
○ Ensure part database’ capacity, security and accessibility to establish easy

upgradability and data fetching.
○ Efficient and fast response time for web scraping, XML extraction and Feature

Model construction.

SDDEC​20-22 5

○ Ability to handle many clients accessing the server without hindering
performance.

● Constraints
○ Ability to handle many clients accessing the server without compromising

integrity and preventing a Denial of Service attack with overloaded traffic
○ Working hand-in-hand with the current version of FeatureIDE and the need to

update the plugin with consecutive FeatureIDE updates

1.5 I​NTENDED​ U​SERS​ ​AND​ U​SES

The main users are scientists that build biological models of living organisms with specific desired
properties. The goal of this project aims to be an aid for everyone interested in building DNA
Feature Models without any restriction.

1.6 A​SSUMPTIONS​ ​AND​ L​IMITATIONS

During the course of the project, some assumptions and limitations needed to be noted. These
assumptions and limitations are as follows:

Assumptions:

● Users with and without knowledge of feature models can build feature models of DNA.
● The end product provides access and can be used anywhere with internet access to the

Biobrick repository.

Limitations:

● The Biobricks Repository is the main source of information and users need internet access
anytime they want to use the plugin.

○ This limitation, however, is an introductory limitation; users running the plugin
for the first time will need to update the local database with parts from the online
database.

○ The intermediary steps after need not require internet access.

1.7 E​XPECTED​ E​ND​ P​RODUCT​ ​AND​ D​ELIVERABLES

An expected end product is a FeatureIDE plugin that uses parts extracted from the BioBricks
Repository. The plugin includes up-to-date BioBrick parts classified within organized categories
with informative description for each part. The organization allows users to construct models
without the hassle of navigating BioBricks repository.

Estimated Delivery Date:​ December 1st 2020

2. Specifications and Analysis

2.1 P​ROPOSED​ A​PPROACH

The project can be tackled using various techniques and methods to solve the problem and deliver
a high-quality product. One approach is dividing the project into two sections: theoretical and
practical section. For each section, assign two subsections: architecture and scope. Strengthening
the understanding in the fundamental steps enables a solid composition of the scope of the theory.

SDDEC​20-22 6

Gaining conceptual insight and obtaining all architectural designs helps ease the design of
application and the practical section.

Another approach deemed vital and best is approaching this project as a project manager working
on a software application for a company. This project consists entirely of coding and software
design; this method proves unparalleled. Devising such a mechanism aids in the production of an
ideal product. Utilizing this method commences several documents to aid in beginning the project:
a business case, statement of requirements, a project timeline, risk assessment and mitigation,
budget, and lastly, a communication plan. The last method of approach is an agile approach. This
approach entails promptly coordinated, vigorous, and nimble adaptations to varying settings.

These methods of approach all follow IEEE standards with designing a software project and the
standards regarding joint project work. Research and analysis of several papers concerning
compilation of an architectural blueprint of the project and beginning development was completed
as segways into the project. Various research papers handed out to us from our client: DNA as
Features: Organic Software Product Lines and Principles of Feature Modeling were also studied. To
start on the development of the plugin, a solid comprehension software product line engineering,
the BioBricks repository, and Feature IDE (an Eclipse plugin) needed to be built. The first few
weeks began with grasping the core concept of the project by identifying and exploring the various
aspects of implementation (mentioned above). In the following weeks, project schemes and
strategies were devised. Multiple tools make their use in the project. Those tools are web crawling,
Java/XML programming, and working with Eclipse plugins.

Members of the team are tasked with roles best attributed to their ability and allows them to
explore and learn while completing the tasks. Taking all these into consideration, the project
presents milestones within a deadline to be achieved by following an Agile development scheme.
Functionalities, hence, increase with project and team progression as judged by the team.

2.2 D​ESIGN​ A​NALYSIS

As mentioned in the previous section, discussions on different tools necessary to begin the project
and exactly how to use them commenced. Most tools and experiments worked well; most
experiments lead to successes except for a single failure. Web crawling was a complicated task, but
a program that scraped a simple, random website was created. Another success was understanding
and editing the source code for an Eclipse plugin. After successfully scraping the data from the
website and reading it, thoughts on an XML conversion of the data for later use came about.

There were some challenges translating it to the correct XML format. Throughout the testing and
experimenting session, observations were made on modifications and tools needed to take
advantage of during the course of the project. One observation was that data scraping does not
result in XML code, therefore resorting to an SQL server deemed the next best option. Some
recorded thoughts were learning XML aids during the product’s final stages, changing from web
scraping to an SQL database, and understanding how additions to plugins are made. more work
spent on the approach of software design and the use of the software is required for an efficient
gateway towards the end of the project.

2.3 D​EVELOPMENT​ P​ROCESS
DNA to Feature Models follows the approach of Agile software development. Based on the nature
of the project, Agile is most suitable due to project requirements and features evolving throughout
the process of creation. The project has preliminary, required foundations but the building blocks
and the materials built upon the foundations dynamically change with the project.

SDDEC​20-22 7

The team separates tasks based on individual skill; applying the best expertise to a given task. Team
members knowledgeable in the backend aspect of the project work in that scope and those
knowledgeable in the frontend gain the same workload within that location.

2.4 C​ONCEPTUAL​ S​KETCH
The conceptual sketch of the project is shown in Figure 1. The project involves utilizing Software
Product Lines and Feature Models. To present Feature Models that make sense to a given user, a
friendly user-interface is required. The user interface is provided through an Integrated
Development Environment called FeatureIDE. This section is presented through the frontend
aspect of the plugin. The frontend includes all formable relationships as defined by a feature model,
and is built-upon Eclipse.

The next section talks about the backend aspect of the project. Parts from the BioBrick Repository
will be extracted using a web-scraper and stored in a designated database. This database includes
all information relevant parts used in a DNA model. Using the database, creation of models
depends on an XML parser which organizes elements of a model according to a user and utilizes all
properties of a subset of features with respect to a superset of features.

F​IGURE​ 1​: ​THE​ ​FLOW​ ​OF​ ​PROJECT​ ​REQUIREMENTS​ ​AND​ ​DEPENDENCIES​ ​PRESENTED​ ​IN​ ​A​ ​HIERARCHY​. T​HE​ ​FIGURE​ ​IS
MODELLED​ ​SIMILARLY​ ​TO​ ​A​ ​FEATURE​ ​MODEL​.

3. Statement of Work

3.1 P​REVIOUS​ W​ORK​ A​ND​ L​ITERATURE

● Principles of Feature Modeling- ​Damir Nesic, Jacob Kruger, Stefan Stanciulescu, Thorsten
Berger

● DNA as Features: Organic Software Product Lines- ​Mikaela Cashman, Justin Firestone, Myra
B.Cohen, Thammasak Thianniwet, Wei Niu

● FeatureIDE source code

SDDEC​20-22 8

The above reference documents provide various pieces of information that need to be brought
together for the project to function fully. ​Principles of Feature Modeling ​dives deep into the concept
of feature modeling, how it is used in the real world, and it’s overall functionality. ​The DNA as
Features ​document provides us the technical insight (from a biological viewpoint), and how
biobricks and feature modeling come into play. With these two documents and the given
FeatureIDE source code; all three pieces combined gives the project all its supplemental references.
While there are many feature modeling products in the industry, none bring together the three
documents outlined above. All references are cited below in section 6.2.

3.2 T​ECHNOLOGY​ C​ONSIDERATIONS

The project does not rely on technology that is behind it’s time. In fact, anything that can be
conceived (in terms of this project), can most likely be programmed in. While the technology
needed for this project to be successful is available, things like efficiency, and data storage come to
mind when improvements come to mind. The project relies on an individual server that stores all
BioBricks data. Data is hard coded into the plugin.

A design tradeoff was made between using a live web scraper vs one updated on every interval. The
decision was made to go with an interval-based update due to the fact that the BioBricks Repository
is updated once a year towards the end of the year after the completion of a so-called competition:
the iGEM Competition. This period implies that the update occurs after the completion of the
competition and automatically rolls out as a CI/CD functionality.

3.3 T​ASK​ D​ECOMPOSITION

The following tasks are derived from the project’s requirements:

● Obtain parts’ data from BioBricks Repo using web scraper/XML extraction.
● Construct parts objects corresponding to their types with the obtained data.
● Populate the database with parts data.
● Establish a connection between the server and FeatureIDE plugin.
● Construct feature modules within FeatureIDE using the XML Feature Builder Tool.
● Create a simple drop-down menu to assist users to choose parts inside a feature module.

3.4 P​OSSIBLE​ R​ISKS​ A​ND​ R​ISK​ M​ANAGEMENT

With every project comes a risk. The pandemic crisis has split the team across the world, forcing
remote interaction. Face to face interactions often led to a greater understanding of what needed to
be done on the project. The software aspect of this project makes it easy to collaborate on remotely;
there are many communication channels set up for us to reduce the risk of miscommunication.
Risks associated with the project are the following:

● Communication Issues
○ Giving each team member tasks to be completed by a deadline and a friendly

environment where communication is encouraged is provided. Team leader also
checks in periodically.

● Discontinuation of the BioBricks and iGEM Repository
○ Find a new source to update parts, and keep available parts within the database.

● Plugin Developmental Error
○ Break up plugin development into parts.

● Loss of Updated Code

SDDEC​20-22 9

○ Use of GitHub and creating branches to keep most updated work on remote and
most successful on the main branch.

SDDEC​20-22 10

3.5 P​ROJECT​ P​ROPOSED​ M​ILESTONES​ ​AND​ E​VALUATION​ C​RITERIA

● Establish connection to Biobrick Repository to gather Biological Part information
○ In order to get data for Parts to build Feature Models, the team needed to make

sure all Biological Part data on Biobricks repository is scraped.
● Store Biological Part information to database

○ Build a database with the output from web scraping.
● Build Feature Models based on database

○ On initialization of the database, the team integrates a mean to convert data to
part objects for the Feature Model in FeatureIDE.

● Update database every year when changes are made
○ Due to iGEM opening annually, parts in the Biobrick Repository will be updated

annually. The database is hence updated annually.
● Improve plugin functionality

○ The final format of the project is to build a system with plugins usable from
Eclipse.

● Enhance user interface
○ The team updated the graphical user interface to provide easier but effective tools

for users.

In order to confirm that team’s milestones are fulfilled, the team came up with following ways to
evaluate:

● Confirm the correct data has been scraped with the online BioBricks repository.
● Run and check if output of web scraping is parsed to the team's database with all contents.
● Extract database and run it through FeatureIDE to ensure the parts are usable and stored.
● Check annually for updates to the database from Biobrick Repository to ensure the team's

database is updated.
● Make sure plugin’s functions are usable.
● Test user interface using different methods to ensure it’s ease of use.

3.6 P​ROJECT​ T​RACKING​ P​ROCEDURES

● Gitlab
○ Gitlab is used to track code developed and give easier access to all team members.
○ Members track changes and revert to different versions of the project.

● Weekly Meetings
○ Every Tuesday, the team has a meeting with Professor Myra discussing what was

completed in the previous week.
○ On Sunday, team members gather and discuss the task for the future.

● Trello
○ Team members use Trello boards to keep track of task status.

● Slack
○ The team uses Slack to discuss issues or details about tasks.

SDDEC​20-22 11

3.7 E​XPECTED​ R​ESULTS​ ​AND​ V​ALIDATION

Expected Results
A desired outcome is to have a working plugin that assists scientists build biological models of
living organisms with specific desired properties. Users view each biological part containing
information of part name, type, number of uses, validation of stock. An expected final product for
people interested in building DNA Feature Models to work on the task without restriction.

Validation
To validate the program, the team conducts through acceptance testing. Gathering review and
feedback on what needs to be adjusted. Unit testing is another option to check if a project program
is working properly as team’s intention throughout the developing stage and finalizing.

4. Project Timeline, Estimated Resources, and Challenges

4.1 P​ROJECT​ T​IMELINE

The project timeline divides itself into four phases. Each phase consists of eight work weeks. These
eight work weeks are subdivided according to team-agreed deadlines for completing tasks
amounting to total project progress.

The timeline is presented in Figure 2, where a hierarchy of tasks are presented similar to a feature
model. By judging current team progress, the feature model of the project timeline represents an
achievable goal within two semesters given that each task in subphases are completed by members
best attributed to the task. A Gantt Chart is presented in Figure 3 where milestones and tasks are
broken down into their estimated time needed.

Plugin implementation has exclusive control by phases 3 and 4 due to the heaviness of the task
compared to the fundamental plugin build completed in phases 1 and 2; earlier phases involve
composition of solid foundations before creating the frontend aspect to ensure a reliable product.

SDDEC​20-22 12

F​IGURE​ 2​: ​TIMELINE​ ​OF​ ​THE​ ​PROJECT​ ​PRESENTED​ ​AS​ ​A​ ​HIERARCHY​ ​SIMILAR​ ​TO​ ​A​ ​FEATURE​ ​MODEL​. T​HE​ ​PROJECT​ ​IS
DIVIDED​ ​INTO​ ​FOUR​ ​DESIGN​ ​PHASES​ ​CONSISTING​ ​OF​ ​EIGHT​ ​WORK​ ​WEEKS​. E​ACH​ ​PHASE​ ​BREAKS​ ​DOWN​ ​A​ ​SET​ ​OF​ ​TASKS​ ​TO
BE​ ​COMPLETED​ ​BY​ ​THE​ ​EXPECTED​ ​WORK​ ​WEEK​ ​DEADLINE

F​IGURE​ 3: ​G​ANTT​ C​HART​ ​PRESENTING​ ​TASK​ ​AND​ ​MILESTONE​ ​BREAKDOWN​ ​WITH​ ​ESTIMATED​ ​TIMES​. T​HIS​ G​ANTT​ C​HART
IS​ ​USED​ ​AS​ ​A​ ​PROGRESS​ ​TRACKER​ ​TO​ ​MAKE​ ​SURE​ ​THE​ ​TEAM​ ​IS​ ​IN​ ​THE​ ​EXPECTED​ ​DESIGN​ ​PHASE​.

SDDEC​20-22 13

4.2 F​EASIBILITY​ A​SSESSMENT

The project helps scientists view various models from BioBricks in an organized hierarchy. It is also
an aid for everyone interested in building DNA Feature Models without any restriction. Foreseen
challenges came in two aspects: poor change management and no long-term thinking. For the
project to succeed, a big picture view was needed to complete the project. What this project does
need is constant change throughout implementation; keeping track of the different changing
curves, and commitment to those changes.

4.3 P​ERSONNEL​ E​FFORT​ R​EQUIREMENTS

Tables were created to present task deduction and dedicated time allocated for each task as well as
an explanation. These are shown below in tables 1 - 3.

T​ABLE​ 1: ​TABLE​ ​SHOWING​ ​TASKS​ ​WITH​ ​LOW​ ​PROJECTED​ ​EFFORT

SDDEC​20-22 14

Task Projected effort Hours/Weeks Explanation

Database Setup low 5 hours for 3 weeks Building and creating the
database needed for the project.
Contains relevant information
for software setup and data
needed for the plugin.

iGEM web scraping
setup and testing

low 10 hours for 1 week Focused on web scraping
different data to be able to test,
setup, and understand how web
scraping works.

Create solid
BioBricks Part Entity

low 5 hours for 1 week Worked on creating the solid
BioBricks part object/entity
with all the necessary backend
services for full function.

File Parser

low 5 hours for 2 weeks Created the file parser that
parses line-by-line and
populates a collection of strings
later to be used when creating
part entities.

T​ABLE​ 2: ​TABLE​ ​SHOWING​ ​TASKS​ ​WITH​ ​MEDIUM​ ​PROJECTED​ ​EFFORT

SDDEC​20-22 15

Frontend
Development

Medium 12 hours for 4
weeks

Started working on the frontend
portion of the project to create
the plugin and connect back end
with front end

User Interface Medium 6 hours for 3
weeks

Creating user interface for plugin
and creating how user accesses
data in the plugin

Enhance UI Medium 8 hours for 2
weeks

Final touches for the UI and
satisfying user needs

Testing Medium 4 hours for 1 week Stress testing everything needed
to move on

Refactoring Medium 6 hours for 2
weeks

Refactoring and cleaning up code
to present the final deliverable.

T​ABLE​ 3: ​TABLE​ ​SHOWING​ ​TASKS​ ​WITH​ ​HIGH​ ​PROJECTED​ ​EFFORT

4.4 O​THER​ R​ESOURCE​ R​EQUIREMENTS

● EclipseIDE
● Java Runtime Environment
● FeatureIDE Plugin for Eclipse
● MySQL Database
● Server Hosting

SDDEC​20-22 16

Shell Web Scraping High 6 hours for 2
weeks

This task was incorporating shell
web scripting program into the
Java plugin for automated
scraping when given a generic
URL

Refining Web
Scraping Output

High 10 hours for 2
weeks

Taking the web scraped output
and translating it into XML

Converting Strings
into Objects

High 6 hours for 3
weeks

This trask was converting a
collection of strings into part
objects to be pushed to the
database and for future usage

Commenced
Automated Web
scraping

High 5 hours for 2
weeks

Commenced, dated automated
web scraping, and database
population with more specific
part objects

Frontend
Development

High 12 hours for 4
weeks

Started working on the front end
portion of the project to create
the plugin and connect the
backend with the frontend.

4.5 F​INANCIAL​ R​EQUIREMENTS

A breakdown of financial requirements for the project is shown in the below table. Decisions were
made with cost efficiency and quality in mind.

T​ABLE​ 4​: ​COST​ ​BREAKDOWN​ ​FOR​ ​THE​ ​PROJECT

5. Testing and Implementation

5.1 I​NTERFACE​ S​PECIFICATIONS

The project is entirely software development and coding. There are multiple ways in which a
software project can be tested. This project is tested using:

● Functionality testing
○ Trying out every function implemented and making sure functionality is correct.

● Mockito Tests
○ Used to test part information parsing and database behavior.

● Review of full code
○ Presenting code to a professional to allow them to discover any problems that will

cause bugs in the future
● CI/CD

○ Keep the server running automatically and detect compiling issues.
○ Immediately push latest updates to code.

● Code analysis:
○ Testing the code with a software called PMD Java that reveals security

vulnerabilities and concurrency issues.
○ Encoded in Eclipse to automatically check for the aforementioned issues.

● JUnit Tests
○ Verify the wanted construction of feature models.

SDDEC​20-22 17

Resource Cost

Iowa State Provided Server Free

Git Provided by Iowa State Free

Equipment $300

Personal Computers Free

Online lessons for Plugin Development Free

Total $300

5.2 H​ARDWARE​ ​AND​ ​SOFTWARE

Software used in the testing phase include:

● PMD:​ used to scan code written and shows some potential bugs and problems that may
occur. This is useful because it can increase performance, complexity of code, and assists
debuggers in removing all bugs.

● Checkstyle:​ used to improve code adheres and makes sure the style of each class written is
similar to the other. This is useful because code is pushed to the database by 5 different
people and each one will have a different coding style.

● SecurityBugs:​ used to show bugs that MAY occur in the future and helps write code to be
able to avoid such bugs. This is useful because it helps save time by avoiding the
occurrence of different bugs.

5.3 F​UNCTIONAL​ T​ESTING

The project follows a simple testing scheme. The testing schemes are defined as follows:

● Unit Testing:
The team tests each method introduced to the server for correctness and performance. As
more functionality is added to the backend, complex unit tests to validate stability and
behavior will hence be added. These tests will be conducted on web scraping, data parsing
and database to validate our backend development.

● Interface Testing:
GUI is an important component of any software. The team’s goal is to build a simple
interface that lets users choose parts using a drop-down menu. Testing is done through
simulation and on-click tests then users will be asked for feedback on implementation
design to ensure a familiar and easy GUI design. Most of the interface testing follows
manual testing since it provides better debugging results.

● Integration Testing:
Since frontend and backend dependence is essential, integration is a crucial part of the
project that brings all components together. Testing is conducted for basic authentication
and communication between the server and frontend to establish stable ground. Features
will be tested as they are added to ensure stability, performance, and security standards
until all desired features are implemented.

5.4 N​ON​-F​UNCTIONAL​ T​ESTING

Tests are conducted to establish stability, upgradability, usability, security, and performance.
Mockito testing is used as database capacity increases to ensure the desired efficiency for the
backend. The team will strain the server to ensure its ability to handle many users at the same time.
As for the frontend, on-click testing is used for various scenarios to ensure a smooth and
satisfactory user experience.

SDDEC​20-22 18

5.5 P​ROCESS

The team will start off by a bottom-up approach to PMD and SecurityBugs. This will involve adding
codes that need to be checked and scanned through PMD and SecurityBugs, which will analyze
codes and project the potential bugs or problems that could occur in future. For the testing process,
team members go through the analyzed code and make changes to the component such as
functions, class and interface. Due to working in a team project, code needs to be in a consistent
style. By using Checkstyle, the team’s code ended up with a similar style of code pushed to the
repository and easier to understand the portion of what other members worked on.

F​IGURE​ 4:​ D​IAGRAM​ ​SHOWING​ B​ASIC​ ​TESTING​ ​FLOW​. T​HIS​ ​DIAGRAM​ ​SHOWS​ ​HOW​ ​THE​ ​TEAM​'​S​ ​CODING​ ​AND​ ​TESTING
HAS​ ​BEEN​ ​PROCESSED​ ​INVOLVING​ PMD, S​ECURITY​B​UGS​, ​AND​ C​HECKSTYLE​.

5.6 R​ESULTS

The team faced several issues while working on the project. The first issue the team faced was
“Error with web scraping.” During the phase of web scraping, the team's final goal is to have
consistent data from the Biobrick repository. However, the team struggled due to having unique
characters throughout the output file from web scraping. This was resolved by having an
assumption of having Operation System’s base language setup other than English might cause the
problem. By working on English based OS, the web scraping function got resolved and fully
functional.

Teams are building file parsers to send output files to the database. In future, the program will
consist of a plugin that we automatically parse files to the database.

SDDEC​20-22 19

6. Closing Material

6.1 C​ONCLUSION

DNA to Feature Models has been an interesting journey for the team. Exploring families of SPLs,
SPLs and Feature Models lead us to a better understanding of representing the project.
Experiments conducted thus far have been a success; a database for a catalog of parts based on the
BioBricks Repository has been established. Parts can be extracted using controllers with respect to
certain criteria.

Testing has been successful as interactions with the backend through a designated request service
was successful. The project’s achievements during the first two phases exceeded our expectations;
the last phases of the project appear to be full of excitement. Successful project planning led the
team to this outcome. With the unfortunate COVID-19 outbreak and pandemic, the team created a
contingency plan; following the plan ensured project progress remains efficient and team members
safety a priority.

6.2 R​EFERENCES

Previous works are referenced below. The team thanks all the information contributed by these
sources and their availability.

● D. N. KTH, D. Nešić, J. Krüger, Ș. Stănciulescu, Ș. Stănciulescu, T. Berger, T. Berger, Kth,
Jacob Krüger University of Magdeburg, University of Magdeburg, Abb, Abb, Chalmers
University of Technology, Chalmers University of Technology, University of Tartu,
Saarland University, and Imperial College, “Principles of feature modeling,” Principles of
feature modeling | Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
01-Aug-2019. [Online]. Available: https://dl.acm.org/doi/abs/10.1145/3338906.3338974.
[Accessed: 23-Jan-2020].

● M. Cashman, M. B. Cohen, M. B. Cohen, W. Niu, Mikaela Cashman Iowa State University,
Iowa State University, Iowa State UniversityView Profile, Justin Firestone University of
Nebraska-Lincoln, Justin Firestone, University of Nebraska-Lincoln, University of
Nebraska-LincolnView Profile, Iowa State University, Suranaree University of Technology,
Suranaree University of Technology, Wei Niu University of Nebraska-Lincoln, Chalmers |
University of Gothenburg, University Lille, Danfoss Power Electronics A/S, University of
Namur,Humboldt-Universit, University Paris, IK4-IKERLAN Research Center, Sorbonne
University, and TU Braunschweig, “DNA as Features: Organic Software Product Lines,”
DNA as Features | Proceedings of the 23rd International Systems and Software Product
Line Conference - Volume A, 01-Sep-2019. [Online]. Available:
https://dl.acm.org/doi/10.1145/3336294.3336298. [Accessed: 23-Jan-2020].

● T. Thum and J. Meinicke, “FeatureIDE,” FeatureIDE. [Online]. Available:
https://featureide.github.io

SDDEC​20-22 20

6.3 A​PPENDICES

● Principles of Feature Modeling- ​Damir Nesic, Jacob Kruger, Stefan Stanciulescu, Thorsten
Berger

● DNA as Features: Organic Software Product Lines- ​Mikaela Cashman, Justin Firestone, Myra
B.Cohen, Thammasak Thianniwet, Wei Niu

● FeatureIDE source code

JSON EXAMPLE Object

{

 "partFunction": "generic function",

 "partType": "Plasmid",

 "partName": "BB_123",

 "pcr": "ccaaggg"

}

Software Bugs encountered during the creation of the project include:

● Exception handling
○ Dealing with FileNotFound exceptions.
○ Handling NullPointer Exceptions

● Error handling
○ Using debuggers to find sources of bugs.
○ Using break statements.

● Local database persistency
● Database setup without all required servers running such as Apache and MySQL

server

SDDEC​20-22 21

